Genome-Wide Association Study of Septoria tritici Blotch Resistance in Ethiopian Durum Wheat Landraces

نویسندگان

  • Yosef G. Kidane
  • Bogale N. Hailemariam
  • Dejene K. Mengistu
  • Carlo Fadda
  • Mario Enrico Pè
  • Matteo Dell'Acqua
چکیده

Septoria tritici blotch (STB) is a devastating fungal disease affecting durum and bread wheat cultivation worldwide. The identification, development, and employment of resistant wheat genetic material is the key to overcoming costs and limitations of fungicide treatments. The search for resistance sources in untapped genetic material may speed up the deployment of STB genetic resistance in the field. Ethiopian durum wheat landraces represent a valuable source of such diversity. In this study, 318 Ethiopian durum wheat genotypes, for the most part traditional landraces, were phenotyped for resistance to different aspects of STB infection. Phenology, yield and yield component traits were concurrently measured the collection. Here we describe the distribution of STB resistance traits in modern varieties and in landraces, and the relation existing between STB resistance and other agronomic traits. STB resistance sources were found in landraces as well as in modern varieties tested, suggesting the presence of alleles of breeding relevance. The genetic material was genotyped with more than 16 thousand genome-wide polymorphic markers to describe the linkage disequilibrium and genetic structure existing within the panel of genotypes, and a genome-wide association (GWA) study was run to allow the identification of genomic loci involved in STB resistance. High diversity and low genetic structure in the panel allowed high efficiency GWA. The GWA scan detected five major putative QTL for STB resistance, only partially overlapping those already reported in the wheat literature. We report four putative loci for Septoria resistance with no match in previous literature: two highly significant ones on Chr 3A and 5A, and two suggestive ones on Chr 4B and 5B. Markers underlying these QTL explained as much as 10% of the phenotypic variance for disease resistance. We found three cases in which putative QTL for agronomic traits overlapped marker trait association deriving from STB GWA. Our results show that the Ethiopian untapped allelic diversity bears a great value in studying the molecular basis of STB resistance and in breeding for resistance in local and international material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian Durum Wheat (Triticum turgidum ssp. durum)

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is a global concern for wheat production, and has been increasingly destructive in Ethiopia, as well as in the United States and in many other countries. As Ethiopia has a long history of stripe rust epidemics, its native wheat germplasm harbors potentially valuable resistance loci. Moreover, the Ethiopian germplasm has ...

متن کامل

Genome-wide associations for multiple pest resistances in a Northwestern United States elite spring wheat panel

Northern areas of the western United States are one of the most productive wheat growing regions in the United States. Increasing productivity through breeding is hindered by several biotic stresses which slow and constrain targeted yield improvement. In order to understand genetic variation for stripe rust (Puccinia striiformis f. sp. tritici), Septoria tritici blotch (Mycosphaerella graminico...

متن کامل

High‐density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding

Durum wheat (Triticum turgidum subsp. durum) is a key crop worldwide, and yet, its improvement and adaptation to emerging environmental threats is made difficult by the limited amount of allelic variation included in its elite pool. New allelic diversity may provide novel loci to international crop breeding through quantitative trait loci (QTL) mapping in unexplored material. Here, we report th...

متن کامل

Quantitative expression analysis of candidate genes for Septoria tritici blotch resistance in wheat (Triticum aestivum L.)

Septoria tritici blotch (STB), caused by the ascomycete fungus Mycosphaerella graminicola (asexual stage: Septoria tritici), is one of the most important foliar diseases of wheat. In this research, quantitative expression analysis of five candidate genes for the induction of resistance to STB (PR-1, Bsi, Msr, Per, and Ppi) was conducted in the wheat cultivars ‘Seri 82’ (susceptible) and ‘Fronta...

متن کامل

New Insights into the Roles of Host Gene-Necrotrophic Effector Interactions in Governing Susceptibility of Durum Wheat to Tan Spot and Septoria nodorum Blotch

Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE ToxA is produced by both pathogens and has been associated with the development of both tan spot an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017